
J
H
E
P
0
8
(
2
0
0
7
)
0
9
2

Published by Institute of Physics Publishing for SISSA

Received: May 27, 2007

Accepted: August 16, 2007

Published: August 31, 2007

Hadron spectroscopy from canonical partition

functions
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1. Introduction

One of the most critical steps in hadron spectroscopy is the choice of the wave function for

the particle of interest. Without finding the proper interpolating operator contamination

from other particle states can often occur. This does not cause serious difficulties when

one deals with simple particles such as mesons or baryons, but the extraction of the correct

mass can be a tremendous task when one is looking for more compound states. Therefore,

a spectroscopic method that does not require knowledge of the wave function is desirable.

The question was first addressed in ref. [1], where the explicit inversion of the fermion

matrix on duplicated lattice configurations and the examination of the exponential decay

rate of the lowest hadron state led to the expression

amπ = − 1

Lt
· max
|λk|<1

ln |λk|2 (1.1)

for the mass of the Goldstone pion on each configuration, where a is the lattice spacing,

Lt is the number of lattice sites in the temporal direction and λk are the eigenvalues of the
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reduced staggered fermion matrix (see section 3). The aim is to find the relation between

the hadron spectrum and these eigenvalues.

There has been many advances recently in the canonical approach to finite density

QCD [2 – 5]. Based on the canonical formulation we make an attempt to clarify and extend

the findings of ref. [1] and give a method which in principle can be used to obtain the

masses of different particles.

The paper is organized as follows. In section 2 we summarize how canonical partition

functions can be used to obtain the masses of particles. This is followed by a description

of how canonical partition functions can be obtained on the lattice in section 3. The way

one can find the relevant eigenvalues is shown in section 4. In section 5 we show how the

Z3 symmetry can be used to simplify our formulae. The case of baryons is explained in

section 6 while the case of mesons is discussed in section 7. Finally, after showing our

numerical results in section 8 we conclude in section 9.

2. Masses from canonical partition functions

Let us consider the general case when we have ns different quark fields. Let N̂i and µi

denote the quark number operator and the quark number chemical potential corresponding

to the ith quark field, respectively. Then the grand canonical partition function at a given

set of chemical potential values (µ1, µ2, . . . , µns) and temperature T is given by

Z(µ1, µ2, . . . , µns , T ) = Tr
[

e−(Ĥ−µ1N̂1−µ2N̂2− ...−µns N̂ns)/T
]

. (2.1)

The canonical partition function corresponding to a given set of quark number values

N1, . . . , Nns can be obtained by taking the trace only over the subspace N̂1 = N1, . . . , N̂ns =

Nns .

ZN1,...,Nns
(T ) = Tr

[

e−Ĥ/T · δN̂1,N1
. . . δN̂ns ,Nns

]

(2.2)

= Tr

[

e−Ĥ/T · 1

2π

∫ 2π

0
ei(N̂1−N1)θ1 dθ1 · · · 1

2π

∫ 2π

0
ei(N̂ns−Nns)θns dθns

]

=
1

(2π)ns

∫ 2π

0
dθ1 e−iN1θ1 . . .

∫ 2π

0
dθns e−iNnsθns ×

×Tr
[

e−(Ĥ−iT θ1N̂1− ...−iT θns N̂ns )/T
]

=
1

(2π)ns

∫ 2π

0
dθ1 e−iN1θ1 . . .

∫ 2π

0
dθns e−iNnsθns Z(iT θ1, . . . , iT θns , T )

When one introduces imaginary chemical potentials [6], the different canonical partition

functions become the coefficients in the Fourier expansion of the grand canonical partition

function.

ZN1,...,Nns
(T ) =

1

(2πT )ns

∫ 2πT

0
dµ1 . . .

∫ 2πT

0
dµns e−iµ1N1/T · · · e−iµnsNns/T ×

×Z(iµ1, . . . , iµns , T )

Z(iµ1, . . . , iµns , T ) =
∞
∑

N1=−∞

· · ·
∞
∑

Nns=−∞

ZN1,...,Nns
(T ) eiµ1N1/T · · · eiµnsNns/T
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When the aim is to find the energy of the lowest state in the sector corresponding to

quark numbers (N1, . . . , Nns) one has to examine the low temperature behavior of the free

energy

FN1,...,Nns
(T ) = −T ln ZN1,...,Nns

(T ). (2.3)

The canonical partition function can be written as

ZN1,...,Nns
(T ) =

∞
∑

k=0

n
(N1,...,Nns )
k e−E

(N1,...,Nns )

k
/T , (2.4)

where E
(N1,...,Nns)
k and n

(N1,...,Nns)
k are the energy and the multiplicity of the kth state in

sector (N1, . . . , Nns), respectively. In sector (0, . . . , 0) the lowest state is the vacuum, which

is assumed to be non-degenerate.

Z0,...,0(T ) = e−E
(0,...,0)
0 /T +

∞
∑

k=1

n
(0,...,0)
k e−E

(0,...,0)
k

/T (2.5)

Then the difference of the free energies of sector (N1, . . . , Nns) and the zero quark number

sector can be rewritten as

FN1,...,Nns
(T ) − F0,...,0(T ) = E

(N1,...,Nns )
0 − E

(0,...,0)
0 − T ln n

(N1,...,Nns )
0 (2.6)

−T ln















1 +
∞
∑

k=1

n
(N1,...,Nns)
k

n
(N1,...,Nns)
0

e−(E
(N1,...,Nns )

k
−E

(N1,...,Nns )
0 )/T

1 +
∞
∑

k=1

n
(0,...,0)
k e−(E

(0,...,0)
k

−E
(0,...,0)
0 )/T















.

The mass of the lowest state in sector (N1, . . . , Nns) is the difference of the energy of the

ground state in this sector and the energy of the vacuum state,

m
(N1,...,Nns )
0 = E

(N1,...,Nns )
0 − E

(0,...,0)
0 . (2.7)

If the temperature is much smaller than the energy differences that appear in the expo-

nentials in equation (2.6) then the last term on the r.h.s. of (2.6) is negligible compared to

the other terms. In this region the difference of the free energies follows a linear behaviour,

FN1,...,Nns
(T ) − F0,...,0(T ) ≈ m

(N1,...,Nns)
0 − T lnn

(N1,...,Nns)
0 , (2.8)

where the slope of the linear behaviour depends only on the multiplicity of the ground state.

Therefore, the mass of the lightest particle carrying quantum numbers (N1, . . . , Nns) and

its multiplicity can be obtained by a linear extrapolation to the T = 0 limit.

m
(N1,...,Nns )
0 = lim

T→0

[

FN1,...,Nns
(T ) − F0,...,0(T )

]

(2.9)

– 3 –



J
H
E
P
0
8
(
2
0
0
7
)
0
9
2

3. Canonical partition functions on the lattice

The temperature on the lattice is given by T = 1/aLt, where Lt is the number of sites

in the temporal direction and a is the lattice spacing. Let µ̂i = µia denote the chemical

potentials in lattice units. In order to introduce these chemical potentials on the lattice

the forward time-like links have to be multiplied by eiµ̂i and the backward time-like links

by e−iµ̂i in the fermion determinant of quarks of type i [7]. Then the grand canonical

partition function using staggered lattice fermions can be written as

Z(iµ̂1, . . . , iµ̂ns) =

∫

[dU ] e−Sg[U ]
ns
∏

i=1

detM(mi, iµ̂i, U)ni/4, (3.1)

where mi denotes the bare mass and ni denotes the number of tastes of the ith staggered

quark field. The functional integral is taken over all possible gauge configurations U and

Sg[U ] denotes the pure gauge part of the action.

The partition function can be rewritten in the form

Z(iµ̂1, . . . , iµ̂ns) =

∫

[dU ] e−Sg[U ]
ns
∏

i=1

detM(mi, 0, U)ni/4 ×
ns
∏

i=1

(

detM(mi, iµ̂i, U)

det M(mi, 0, U)

)ni/4

.

(3.2)

The ratios of the determinants can be treated as observables while the functional integral

can be taken using the measure at µ̂i = 0. Then the partition function becomes the

expectation value of the determinant ratios taken over the ensemble generated at zero

chemical potentials,

Z(iµ̂1, . . . , iµ̂ns) = Z ·
〈

ns
∏

i=1

(

det M(mi, iµ̂i, U)

detM(mi, 0, U)

)ni/4
〉

, (3.3)

where Z denotes the zero chemical potential value of the partition function [8].

Therefore, the canonical partition functions are obtained by taking the expectation

values of the Fourier components of the determinant ratios.

ZN1,...,Nns
= Z ·

〈

ns
∏

i=1

Lt

2π

∫ 2π
Lt

0
dµ̂i e

−iµ̂iNiLt

(

detM(mi, iµ̂i, U)

det M(mi, 0, U)

)ni/4
〉

(3.4)

In order to perform the assigned Fourier transformations we need the analytic µ̂-

dependence of det M(iµ̂). In temporal gauge, the fermion matrix can be written as

M(iµ̂) =





















B0 eiµ̂ 0 . . . 0 Ue−iµ̂

−e−iµ̂ B1 eiµ̂ . . . 0 0

0 −e−iµ̂ B2 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . BLt−2 eiµ̂

−U †eiµ̂ 0 0 . . . −e−iµ̂ BLt−1





















, (3.5)

where U denotes the remaining time direction links on the last timeslice (including the

correct staggered phases) and Bk is the spacelike staggered fermion matrix on timeslice k.
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In matrix (3.5) each block is a 3V × 3V matrix, where V = L3
s and Ls is the spatial size of

the lattice. After performing Lt−2 steps of Gaussian elimination, the determinant of (3.5)

can be written as

det M(iµ̂) = e3V Ltiµ̂ det
(

S − e−iµ̂Lt

)

, (3.6)

where

S =

(

0 1

1 BLt−1

)(

0 1

1 BLt−2

)

· · ·
(

0 1

1 B0

)(

U 0

0 U

)

(3.7)

is the 6V × 6V sized reduced fermion matrix [9]. Let λk denote the eigenvalues of S.

Then (3.6) can be written as

detM(iµ̂) = e3V Ltiµ̂
6V
∏

k=1

(

λk − e−iµ̂Lt

)

, (3.8)

and thus,

detM(iµ̂)

detM(0)
= e3V Ltiµ̂

6V
∏

k=1

λk − e−iµ̂Lt

λk − 1
. (3.9)

The eigenvalues of matrix S have a symmetry, according to which whenever λ is an

eigenvalue of S then 1/λ∗ is also an eigenvalue of S [9]. Therefore, each eigenvalue whose

absolute value is greater than 1 has a pair with an absolute value smaller than 1, and vice

versa. (We will not deal with the case when at least one of the eigenvalues lie on the unit

circle because these gauge configurations constitute a zero measure set.) Then (3.9) can

be written as

detM(iµ̂)

det M(0)
= e3V Ltiµ̂

3V
∏

k=1

λk − e−iµ̂Lt

λk − 1

1
λ∗

k
− e−iµ̂Lt

1
λ∗

k
− 1

=

3V
∏

k=1

∣

∣

∣

∣

1 − λk eiµ̂Lt

1 − λk

∣

∣

∣

∣

2

, (3.10)

where the product is taken over only the eigenvalues lying inside the unit circle. From now

on when the limits of a sum or product taken over the eigenvalues of S are from 1 to 3V ,

then the sum or product is meant to be taken over only the “small” eigenvalues, that is,

the eigenvalues with absolute value smaller than 1.

When the temperature is low (T ≪ Tc) a gap appears between the “small” and “large”

eigenvalues of S (see figure 1). This makes a Taylor expansion of (3.10) in the small eigen-

values possible. As the temperature decreases the small eigenvalues become exponentially

smaller, increasing the validity of the series expansion. Including the rational exponent for

the number of tastes nt a first order expansion gives

(

det M(iµ̂)

detM(0)

)nt/4

=

(

3V
∏

k=1

∣

∣

∣

∣

1 − λk eiµ̂Lt

1 − λk

∣

∣

∣

∣

2
)nt/4

(3.11)

≈
[

1 +
nt

4

3V
∑

k=1

λk +
nt

4

3V
∑

k=1

λ∗
k

]

+ eiµ̂Lt

[

−nt

4

3V
∑

k=1

λk

]

+e−iµ̂Lt

[

−nt

4

3V
∑

k=1

λ∗
k

]

. (3.12)
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Figure 1: The absolute values of the eigenvalues of the reduced fermion matrix S on a typical

63 × 24 lattice configuration at a temperature of T ≈ 25 MeV. At this temperature there is already

a noticeable gap between the eigenvalues lying inside the unit circle and the ones lying outside. The

eigenvalues that are relevant for calculating the canonical partition functions are circled.

By performing an nth order Taylor expansion we explicitly obtain all the Fourier coefficients

up to nth order.

This way the assigned Fourier transformations in equation (3.4) can be performed easily

configuration by configuration by simply choosing the coefficients of the corresponding

exponential terms. The order of the leading order term for sector (N1, . . . , Nns) is |N1| +
· · · + |Nns |. When all the quark fields have 4 tastes (ni = 4) the leading order term for

sector (N1, . . . , Nns) can be written as

ZN1,...,Nns

LO
= Z ·

〈

ns
∏

i=1









(−1)|Ni|
∑

1≤k
(i)
1 <···<k

(i)

|Ni|
≤3V

(

λ
(i)

k
(i)
1

· · · λ(i)

k
(i)

|Ni|

)∗(sgn Ni)









〉

, (3.13)

where ∗(sgn Ni) in the exponent means that there is a complex conjugation if Ni is negative.

λ
(i)
k stands for the kth eigenvalue of the reduced matrix S(i) obtained from the fermion

matrix of the ith quark field.

The leading order term in case of arbitrary number of tastes ni can be obtained

from (3.13) as follows. The formula within the expectation value signs can be written

as a homogeneous polynomial of the eigenvalues of degree |N1| + · · · + |Nns | using the

expressions

3V
∑

k=1

(

λ
(i)
k

)j
j = 1, . . . , Ni if Ni is positive, and (3.14)

3V
∑

k=1

(

λ
(i)
k

∗)j
j = 1, . . . ,−Ni if Ni is negative. (3.15)

– 6 –
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The leading order term in the general case is obtained by replacing the expressions

3V
∑

k=1

(

λ
(i)
k

)j
with

ni

4

3V
∑

k=1

(

λ
(i)
k

)j
and

3V
∑

k=1

(

λ
(i)
k

∗)j
with

ni

4

3V
∑

k=1

(

λ
(i)
k

∗)j

(3.16)

in the above polynomial.

4. Obtaining the relevant eigenvalues

In order to calculate the canonical partition functions using the description given

in (3.13), (3.15) and (3.16) we do not need all of the 3V small eigenvalues. At lower

temperatures (Lt ≥ 50 − 100) the small eigenvalues alone span a range of 20-40 orders of

magnitude. Therefore, the relevant eigenvalues that contribute significantly to the sums

in (3.13)–(3.16) are the largest few of the small eigenvalues (see figure 1). Since the con-

dition number of matrix S at low temperatures can be in the range of O(1060 − 10100)

and these relevant eigenvalues are in the middle of the spectrum, finding these eigenvalues

seems practically impossible.

Nevertheless, the matrix S has some symmetry properties that make it possible. The

spacelike staggered fermion matrices Bk, which appear in (3.5) and (3.7), obey a γ5-

hermiticity

γ5Bk = B†
kγ5, (4.1)

where

(γ5)xy = δxy · (−1)
P

µ xµ . (4.2)

Therefore, the inverse of S can be obtained as

S−1 = (−1)Lt+1

(

0 −γ5

γ5 0

)

S†

(

0 −γ5

γ5 0

)

. (4.3)

As a consequence, once we have the matrix S both S + S−1 and S −S−1 can be easily

constructed. Then by inverting these two one can arrive at

Q =
1

2

[ (

S + S−1
)−1 −

(

S − S−1
)−1 ]

. (4.4)

The order of magnitude of the condition number of S + S−1 and S − S−1 is less than half

of that of S. Therefore, much less numerical precision is sufficient for their inversion.

If λk is an eigenvalue of S then λk/(1 − λ4
k) is an eigenvalue of Q. If λk is a small

eigenvalue, then
∣

∣λ4
k

∣

∣ ≪ 1. In this case using λk/(1 − λ4
k) for the calculations instead

of λk does not make any difference. If λk is a large eigenvalue of S, then λk/(1 − λ4
k) ≈

−1/λ3
k, which is negligible compared to the relevant small eigenvalues. That is, the relevant

eigenvalues of S become the largest eigenvalues of Q.

The procedure for finding the relevant eigenvalues was as follows. After fixing the

temporal gauge the matrices Bk were built. Then from (3.7) and (4.3) the matrices S and

S−1 were constructed. Since S and S−1 are very badly conditioned, their construction as

– 7 –
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Figure 2: The absolute values of the relevant eigenvalues found by the double precision version of

ARPACK (red crosses) and their relative errors (green squares) on a typical lattice of size 63 ×100.

well as working with them requires high precision. For these and the latter calculations

the GNU multiple precision arithmetic library (GNU MP) was used. Then after inverting

S +S−1 and S −S−1 the largest several eigenvalues of Q (the relevant ones) were obtained

using the double precision version of ARPACK. This last step may sound doubious but in

fact the double ARPACK was found to be able to reliably find the eigenvalues that were

not more than 10 orders of magnitude smaller than the largest one (see figure 2).

5. Consequences of the Z3 symmetry

5.1 Consequences for ZN1,...,Nns

From (3.10) it can be seen that the quantity within the expectation value signs in equa-

tion (3.3) is periodic in each µ̂i with a periodicity of 2π/Lt configuration by configuration.

Therefore, the lattice grand canonical partition function (3.1) is also periodic with 2π/Lt

in each µ̂i.

Performing a Z3 transformation, that is, multiplying all the time-like links on the last

timeslice of an SU(3) configuration U by εj (εj = e2πi·j/3, j = 0, 1, 2) gives another SU(3)

configuration denoted by U εj . Then the partition function can be written as

Z(iµ̂1, . . . , iµ̂ns) =
1

3

2
∑

j=0

∫

[dU εj ] e−Sg [Uεj ]
ns
∏

i=1

det M(mi, iµ̂i, U
εj )ni/4. (5.1)

The functional measure and the gauge action are both symmetric with respect to Z3 trans-

– 8 –
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formations [10]. Thus,

Z(iµ̂1, . . . , iµ̂ns) =

∫

[dU ] e−Sg[U ] 1

3

2
∑

j=0

ns
∏

i=1

detM(mi, iµ̂i, U
εj)ni/4 (5.2)

=

∫

[dU ] e−Sg[U ]
ns
∏

i=1

det M(mi, 0, U)ni/4

×1

3

2
∑

j=0

ns
∏

i=1

(

det M(mi, iµ̂i, U
εj )

detM(mi, 0, U)

)ni/4

= Z ·
〈

1

3

2
∑

j=0

ns
∏

i=1

(

detM(mi, iµ̂i, U
εj )

detM(mi, 0, U)

)ni/4
〉

.

Since the U → U εj transformation can be applied in eq. (3.6) by simply multiplying S by

εj , the ratios of the determinants in (5.3) can be rewritten as

detM(mi, iµ̂i, U
εj )

detM(mi, 0, U)
=

3V
∏

k=1

∣

∣

∣

∣

∣

1 − λ
(i)
k εj eiµ̂iLt

1 − λ
(i)
k

∣

∣

∣

∣

∣

2

=

3V
∏

k=1

∣

∣

∣

∣

∣

1 − λ
(i)
k eiµ̂iLt+i 2π

3
j

1 − λ
(i)
k

∣

∣

∣

∣

∣

2

(5.3)

=
det M

(

mi, iµ̂i + i 2π
3Lt

, U
)

det M(mi, 0, U)
. (5.4)

Combining (5.4) with (5.3) we obtain

Z(iµ̂1, . . . , iµ̂ns) =
1

3

[

Z(iµ̂1, . . . , iµ̂ns) + Z

(

iµ̂1 + i
2π

3Lt
, . . . , iµ̂ns + i

2π

3Lt

)

+ Z

(

iµ̂1 + i
4π

3Lt
, . . . , iµ̂ns + i

4π

3Lt

)

]

, (5.5)

which means that the grand canonical partition function has an extra periodicity: if 2πi/3Lt

is added to all the chemical potentials then the value of the partition function remains

unchanged [6].

Z(iµ̂1, . . . , iµ̂ns) = Z

(

iµ̂1 + i
2π

3Lt
, . . . , iµ̂ns + i

2π

3Lt

)

(5.6)

Therefore, the canonical partition functions ZN1,...,Nns
where the total number of quarks

N1 + · · · + Nns is not divisible by 3 are zero [4].

Taking this into account the expectation value of the first order expansion in (3.12)

gives
〈

(

det M(iµ̂)

det M(0)

)nt/4
〉

≈
〈

1 +
nt

4

3V
∑

k=1

λk +
nt

4

3V
∑

k=1

λ∗
k

〉

. (5.7)
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5.2 Application on a term by term basis

Let A[U ] be a gauge invariant quantity (a gauge invariant function of the gauge configura-

tion U). Then the expectation value of A[U ] is

〈A[U ]〉 =
1

Z

∫

[dU ] e−Sg[U ] det M(m1, 0, U)n1/4 · · · detM(mns , 0, U)nns /4 · A[U ]. (5.8)

Using the Z3 invariance of the gauge action and the integration measure one can

rewrite (5.8) as

〈A[U ]〉 =
1

Z

∫

[dU ] e−Sg[U ]
ns
∏

i=1

detM(mi, 0, U)ni/4

×1

3

2
∑

j=0

A[U εj ] ·
ns
∏

i=1

(

detM(mi, 0, U
εj )

detM(mi, 0, U)

)ni/4

, (5.9)

that is,

〈A[U ]〉 =

〈

1

3

2
∑

j=0

A[U εj ] ·
ns
∏

i=1

(

detM(mi, 0, U
εj )

det M(mi, 0, U)

)ni/4
〉

. (5.10)

Using (5.4) an expansion similar to (3.12) can be applied to these determinant ratios.

All the quantities of the form of (3.15) are gauge independent, therefore, each term of

the series expansion can individually be taken as A[U ]. This way the Z3 symmetric form

of (5.10) can be applied to each term in the series expansion. As an example, if we have

only one staggered field (ns = 1) with number of tastes nt then the expectation value of

the first order terms in eq. (3.12) up to leading order become

〈

3V
∑

k=1

λk

〉

LO
=

〈

3V
∑

k=1

λ∗
k

〉

LO
=

〈

−nt

4

∣

∣

∣

∣

∣

3V
∑

k=1

λk

∣

∣

∣

∣

∣

2〉

. (5.11)

Applying this technique term by term the series expansion of (3.12) and (5.7) up to third

order becomes

〈

(

detM(iµ̂)

detM(0)

)nt/4
〉

≈
〈

1 +
nt

12

3V
∑

k=1

λ3
k − n2

t

32

(

3V
∑

k=1

λk

)(

3V
∑

k=1

λ2
k

)

+
n3

t

384

(

3V
∑

k=1

λk

)3

+
nt

12

3V
∑

k=1

λ∗
k
3 − n2

t

32

(

3V
∑

k=1

λ∗
k

)(

3V
∑

k=1

λ∗
k
2

)

+
n3

t

384

(

3V
∑

k=1

λ∗
k

)3 〉

(5.12)

+e3iµ̂Lt ·
〈

− nt

12

3V
∑

k=1

λ3
k +

n2
t

32

(

3V
∑

k=1

λk

)(

3V
∑

k=1

λ2
k

)

− n3
t

384

(

3V
∑

k=1

λk

)3 〉

+e−3iµ̂Lt ·
〈

− nt

12

3V
∑

k=1

λ∗
k
3 +

n2
t

32

(

3V
∑

k=1

λ∗
k

)(

3V
∑

k=1

λ∗
k
2

)

− n3
t

384

(

3V
∑

k=1

λ∗
k

)3 〉

.

In the third order expansion in (5.13) all the terms are already Z3 invariant. If a term

in the series expansion is Z3 invariant then it does not change when the procedure of (5.10)
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is applied to it. When the procedure (5.10) is applied to a non–Z3 invariant term, its

expectation value becomes the expectation value of the sum of higher order terms. This

procedure can be continued order by order and as a result, all the remaining terms in all

the quark number sectors of the series expansion of Z(iµ̂1, . . . , iµ̂ns) become Z3 invariant.

6. Application to baryons

In principle the method described in sections 2 and 3 can be used to measure the mass of

the lowest state in any quark number sector. For example, one can think of the di-baryon

(deuteron), or the bound states of even more baryons. However, in most cases technical

difficulties occur. Let us examine the case when one tries to measure the mass of a baryon,

for example the proton. For that we use two staggered quark fields, one for the u quark

with nu tastes and one for the d quark with nd tastes. (We omitted the third light quark,

the s quark, the inclusion of which in our case does not change the picture significantly.)

The proton is believed to be the lowest state in the Nu = 2, Nd = 1 channel, therefore,

according to (2.8) we need to examine the low temperature behaviour of

FNu=2,Nd=1(T ) − FNu=0,Nd=0(T ) = −T ln

(

Z2,1(T )

Z0,0(T )

)

. (6.1)

According to (3.13)–(3.16) the relevant canonical partition functions to leading order are

Z2,1
LO
= Z ·

〈

nund

32

(

3V
∑

k=1

λ
(u)
k

2

)(

3V
∑

k=1

λ
(d)
k

)

− n2
und

128

(

3V
∑

k=1

λ
(u)
k

)2 (

3V
∑

k=1

λ
(d)
k

)〉

,

Z0,0
LO
= Z · 〈1〉 ,

(6.2)

therefore, for the proton mass one obtains

amp = lim
Lt→∞

− 1

Lt
ln

〈

nund

32

(

3V
∑

k=1

λ
(u)
k

2

)(

3V
∑

k=1

λ
(d)
k

)

− n2
und

128

(

3V
∑

k=1

λ
(u)
k

)2 (

3V
∑

k=1

λ
(d)
k

)〉

.

(6.3)

As the temperature decreases (Lt increases) the eigenvalues become smaller and smaller,

and only the leading order term matters in the limit.

The formulae for the masses of the 2-baryon, 3-baryon, etc. channels can be obtained

similarly. These can in principle be used to measure the bonding energy of several-baryon

states.

The description seems simple, but there is one difficulty. The expression of which

the expectation value is taken in equation (6.3) can be any complex number, whose real

part can be both positive and negative. Its expectation value is much smaller than its

value at a typical gauge configuration. On a 63 × 24 staggered lattice with a ≈ 0.33 fm,

mπ ≈ 330MeV and T ≈ 25MeV this value at a typical gauge configuration is of O(10−10)

while the expected order of magnitude of the expectation value is O(10−20). That means

that the number of configurations needed for a correct result would be of O(1020), which is

prohibitive. The problem becomes even more severe when one decreases the temperature

in order to get closer to the T → 0 limit.

– 11 –
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7. Application to mesons

When nd = nu = nt/2, md = mu and we are looking at one of the Nd = −Nu sectors this

sign problem does not arise. These sectors can be labelled with one parameter, the third

component of the isospin I3 = (Nu − Nd)/2. Since λ
(u)
k = λ

(d)
k for all k, we will write λk

only.

The lowest state in the I3 = 1 sector is expected to be the Goldstone pion. Its partition

function can be written as the expectation value

ZI3=1
LO
= ZNu=1,Nd=−1

LO
= Z ·

〈

n2
t

64

∣

∣

∣

∣

∣

3V
∑

k=1

λk

∣

∣

∣

∣

∣

2〉

, (7.1)

which is a manifestly positive polynomial of the eigenvalues. Therefore, it can be easily

evaluated, and by taking the zero temperature limit

amI3=1,π = lim
Lt→∞

− 1

Lt
ln

〈

n2
t

64

∣

∣

∣

∣

∣

3V
∑

k=1

λk

∣

∣

∣

∣

∣

2〉

(7.2)

one directly obtains the mass of the lowest state in the I3 = 1 channel.

The formulae for the energies of the lowest state in higher I3 channels can be obtained

similarly. These can be used to investigate pion-pion scattering and several-pion states.

The result for the pion mass given in equation (7.2) obtained using purely thermody-

namic considerations can be compared to formula (1.1). If Lt is large, then after taking the

logarithm the factor n2
t /64 gives a negligible contribution compared to that of the sum. If

the temporal extension is large even compared to the spatial volume, then the sum in (7.2)

is dominated by the largest of the small eigenvalues. In this case equations (7.2) and (1.1)

evaluated on a single configuration yield approximately the same results. However, while

ref. [1] only states that relation (1.1) holds configuration by configuration and does not

mention how to obtain results over an ensemble of configurations, equation (7.2) describes

a method for taking the ensemble average.

8. Results

8.1 Dynamical staggered fermions

We performed calculations using dynamical staggered configurations to measure the masses

in the first isospin channel as described in section 7. We used the Wilson plaquette action

for the gauge fields and unimproved staggered fermion action. In order to be able to

check whether the root taking of the fermion determinant changes the results significantly,

calculations were done using rooted staggered fermions with nt = 2 (nu = nd = 1) and

nt = 4 (nu = nd = 2) as well as unrooted fermions with nt = 8 (nu = nd = 4).

For the nt = 2 runs the gauge coupling was β = 4.8. The lattice spacing was a =

0.41 fm, measured from the string tension σ using the value of
√

σ = 465MeV [11]. For the

nt = 4 case β = 4.3 and a = 0.42 fm and for the nt = 8 case β = 3.8 and a = 0.44 fm. In all

three cases the bare quark mass was amq = 0.04 and the spatial extension of the lattice was
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1/aT Number of configurations

nt = 2 nt = 4 nt = 8

50 331 322 –

100 1196 935 701

200 323 605 467

300 168 255 –

Table 1: The number of configurations used for dynamical staggered calculations with a spatial

volume of 63.

1/aT aFI3=1 − aFI3=0

nt = 2 nt = 4 nt = 8

50 0.5344(12) 0.4971(12) –

100 0.5066(2) 0.4826(4) 0.4639(4)

200 0.4931(2) 0.4760(1) 0.4641(3)

300 0.4876(3) 0.4730(3) –

→ ∞ 0.4787(3) 0.4688(3) 0.4643(7)

amπ,sp 0.47864(3) 0.46903(4) 0.46426(3)

Table 2: The differences of the free energies, their T → 0 extrapolated values and the spectroscopic

pion masses on dynamical staggered configurations with a spatial volume of 63.

Ls = 6. In the two rooted case we used temporal lattice extensions of Lt = 50, 100, 200, 300

while in the unrooted case only Lt = 100, 200 was used. Table 1 contains the number of

configurations for each setup.

Using equation (7.1) the difference of the free energies aFI3=1 − aFI3=0 were measured

on each set of configurations. These are listed in table 2. According to equation (2.8) the

mass of the ground state in the I3 = 1 channel can be obtained using a linear extrapolation

to T = 0. For comparison we measured the pion mass in all cases using the ordinary

spectroscopic method, which will be denoted by mπ,sp. The measured free energy values,

the linear fits and the comparisons to the spectroscopic pion masses can be seen in figure 3.

As can be seen from figure 3 the mass of the ground state in the I3 = 1 sector agrees

with the spectroscopic pion mass within errorbars for both rooted and unrooted staggered

fermions.

8.2 Quenched case

Equation (7.2) can be rewritten as

amI3=1,π = lim
Lt→∞



− 1

Lt
ln

(

n2
t

64

)

− 1

Lt
ln

〈∣

∣

∣

∣

∣

3V
∑

k=1

λk

∣

∣

∣

∣

∣

2〉


 = lim
Lt→∞

− 1

Lt
ln

〈∣

∣

∣

∣

∣

3V
∑

k=1

λk

∣

∣

∣

∣

∣

2〉

.

(8.1)

The r.h.s. of equation (8.1) does not explicitly contain the number of staggered tastes. The
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0 0.005 0.01 0.015 0.02
aT

0.46

0.48

0.5

0.52

0.54aF1 − aF0, nt  = 2
aF1 − aF0, nt  = 4
aF1 − aF0, nt  = 80.4785

0.479

amπ,sp

T → 0

nt  = 2           .

0.4685

0.469

amπ,sp

T → 0

nt  = 4           .

0.464

0.465

amπ,sp

T → 0

nt  = 8           .

Figure 3: The differences of the free energies of the isospin one and isospin zero sectors as a function

of the temperature on dynamical staggered configurations with a spatial volume of 63. The dashed

lines show the linear fits to the data points. The T → 0 extrapolated values are compared to the

spectroscopic pion masses.

quantity

“aFI3=1 − aFI3=0” = − 1

Lt
ln

〈∣

∣

∣

∣

∣

3V
∑

k=1

λk

∣

∣

∣

∣

∣

2〉

(8.2)

can be evaluated on quenched configurations as well. The question arises naturally: If one

measures the pion mass on a quenched ensemble using regular staggered spectroscopy and

evaluates the expression in (8.1) with the same fermion mass, will these be the same?

To find this out we performed calculations on quenched configurations generated using

the Wilson plaquette gauge action. The spatial extension of the lattice was Ls = 6, the

gauge coupling was β = 5.6 and the corresponding lattice spacing was a = 0.21 fm [11].

The time extension of the used lattices were Lt = 48, 96, 192, 384 and for the measurements

we used a bare quark mass of amq = 0.04. The number of configurations used are listed

in table 3. The results are summarized in table 4 and the linear extrapolation is shown in

figure 4. The comparison shows that the result obtained from the free energies is consistent

with the spectroscopic pion mass.

The partition function contains all the information about the degrees of freedom

present in the system, therefore, the free energy should be able to make a difference be-

tween dynamical and quenched configurations. The results, however, show that both types

of ensembles yield a free energy that is consistent with particles of mass equal to the spec-

troscopic pion mass present in the system. Thus, one cannot tell this way whether a given

set of configurations is from a dynamical or a quenched ensemble.
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1/aT Number of configurations

48 2502

96 1852

192 731

384 412

Table 3: Number of quenched configurations.

1/aT “aFI3=1 − aFI3=0”

48 0.5393(6)

96 0.5389(2)

192 0.5385(3)

384 0.5389(4)

→ ∞ 0.5385(3)

amπ,sp 0.53874(3)

Table 4: The “differences of the free energies” of the isospin one and isospin zero sectors, their

T → 0 extrapolated value and the spectroscopic pion mass on quenched configurations.

0 0.005 0.01 0.015 0.02
aT

0.538

0.539

0.54

"aF1 − aF0"
T → 0
amπ,sp

Figure 4: The “differences of the free energies” of the isospin one and isospin zero sectors as a

function of the temperature on quenched configurations with a spatial volume of 63 and bare quark

mass amq = 0.04. The dashed line shows the linear fit to the data points. The T → 0 extrapolated

value is compared to the spectroscopic pion mass.

9. Conclusions

We have proposed a spectroscopic method based on purely thermodynamical considera-
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tions. The formulae obtained show the relation between the eigenvalues of the reduced

staggered fermion matrix and the hadron spectrum. The method not only clarifies the

findings of ref. [1] in connection with the Goldstone pion mass, but also extends them. In

principle, the method can be used to obtain the mass of the lightest particle in a given quark

number sector. For example, in principle, the mass of the di-baryon could be obtained.

However, it turns out that the application even to one-baryon states is computationally

very demanding. Nevertheless, we successfully applied our method to the Goldstone pion.

In the calculations presented the mass of the lowest state in the I3 = 1 sector is in agree-

ment with the pion mass obtained using the ordinary spectroscopic method. This indicates

that the method presented in section 7 is a valid way of finding the pion mass.
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